44,273 research outputs found

    Magnetic fields and radiative feedback in the star formation process

    Full text link
    Star formation is a complex process involving the interplay of many physical effects, including gravity, turbulent gas dynamics, magnetic fields and radiation. Our understanding of the process has improved substantially in recent years, primarily as a result of our increased ability to incorporate the relevant physics in numerical calculations of the star formation process. In this contribution we present an overview of our recent studies of star cluster formation in turbulent, magnetised clouds using self-gravitating radiation-magnetohydrodynamics calculations (Price and Bate 2008, 2009). Our incorporation of magnetic fields and radiative transfer into the Smoothed Particle Hydrodynamics method are discussed. We highlight how magnetic fields and radiative heating of the gas around newborn stars can solve several of the key puzzles in star formation, including an explanation for why star formation is such a slow and inefficient process. However, the presence of magnetic fields at observed strengths in collapsing protostellar cores also leads to problems on smaller scales, including a difficulty in forming protostellar discs and binary stars (Price and Bate 2007, Hennebelle and Teyssier 2008), which suggests that our understanding of the role of magnetic fields in star formation is not yet complete.Comment: 14 pages aip conf. format, 5 figures, submitted to AIP conf proc. of "Plasmas in the Laboratory and in the Universe: Interactions, Patterns and Turbulence", Como, Italy 1st-4th Dec 2009, eds. Bertin et al. Relevant movies at http://users.monash.edu.au/~dprice/mclusterRT/index.html#movie

    CaSiO3 perovskite at lower mantle pressures

    Get PDF
    We investigate by first-principles the structural behavior of CaSiO3 perovskite up to lower mantle pressures. We confirm that the cubic perovskite modification is unstable at all pressures. The zero Kelvin structure is stabilized by SiO6 octahedral rotations that lower the symmetry to tetragonal, orthorhombic, rhombohedral, or to a cubic supercell. The resulting structures have comparable energies and equation of state parameters. This suggests that relatively small deviatoric/ shear stresses might induce phase transformations between these various structures softening some elastic moduli, primarily the shear modulus. The seismic signature accompanying a local increase in CaSiO3 content should be a positive density anomaly and a negative V-S anomaly

    Continuous-flow laboratory simulation of stream water quality changes downstream of an untreated wastewater discharge.

    Get PDF
    In regions of the world with poor provision of wastewater treatment, raw sewage is often discharged directly into surface waters. This paper describes an experimental evaluation of the fate of two organic chemicals under these conditions using an artificial channel cascade fed with a mix of settled sewage and river water at its upstream end and operated under continuous steady-state conditions. The experiments underpin an environmental risk assessment methodology based on the idea of an “impact zone” (IZ) – the zone downstream of wastewater emission in which water quality is severely impaired by high concentrations of unionised ammonia, nitrite and biochemical oxygen demand (BOD). Radiolabelled dodecane-6-benzene sulphonate (DOBS) and aniline hydrochloride were used as the model chemical and reference compound respectively. Rapid changes in 14C counts were observed with flow-time for both these materials. These changes were most likely to be due to complete mineralisation. A dissipation half-life of approximately 7.1 h was observed for the 14C label with DOBS. The end of the IZ was defined as the point at which the concentration of both unionised ammonia and nitrite fell below their respective predicted no-effect concentrations for salmonids. At these points in the cascade, approximately 83 and 90% of the initial concentration of 14C had been removed from the water column, respectively. A simple model of mineral nitrogen transformations based on Michaelis–Menten kinetics was fitted to observed concentrations of NH4, NO2 and NO3. The cascade is intended to provide a confirmatory methodology for assessing the ecological risks of chemicals under direct discharge co

    Smoothed particle magnetohydrodynamic simulations of protostellar outflows with misaligned magnetic field and rotation axes

    Get PDF
    We have developed a modified form of the equations of smoothed particle magnetohydrodynamics which are stable in the presence of very steep density gradients. Using this formalism, we have performed simulations of the collapse of magnetised molecular cloud cores to form protostars and drive outflows. Our stable formalism allows for smaller sink particles (< 5 AU) than used previously and the investigation of the effect of varying the angle, {\theta}, between the initial field axis and the rotation axis. The nature of the outflows depends strongly on this angle: jet-like outflows are not produced at all when {\theta} > 30{\deg}, and a collimated outflow is not sustained when {\theta} > 10{\deg}. No substantial outflows of any kind are produced when {\theta} > 60{\deg}. This may place constraints on the geometry of the magnetic field in molecular clouds where bipolar outflows are seen.Comment: Accepted for publication in MNRAS, 13 pages, 14 figures. Animations can be found at http://www.astro.ex.ac.uk/people/blewis/research/outflows_misaligned_fields.htm

    Extending the Latent Multinomial Model with Complex Error Processes and Dynamic Markov Bases

    Get PDF
    The latent multinomial model (LMM) model of Link et al. (2010) provided a general framework for modelling mark-recapture data with potential errors in identification. Key to this approach was a Markov chain Monte Carlo (MCMC) scheme for sampling possible configurations of the counts true capture histories that could have generated the observed data. This MCMC algorithm used vectors from a basis for the kernel of the linear map between the true and observed counts to move between the possible configurations of the true data. Schofield and Bonner (2015) showed that a strict basis was sufficient for some models of the errors, including the model presented by Link et al. (2010), but a larger set called a Markov basis may be required for more complex models. We address two further challenges with this approach: 1) that models with more complex error mechanisms do not fit easily within the LMM and 2) that the Markov basis can be difficult or impossible to compute for even moderate sized studies. We address these issues by extending the LMM to separately model the capture/demographic process and the error process and by developing a new MCMC sampling scheme using dynamic Markov bases. Our work is motivated by a study of Queen snakes (Regina septemvittata) in Kentucky, USA, and we use simulation to compare the use of PIT tags, with perfect identification, and brands, which are prone to error, when estimating survival rates

    Constrained hyperbolic divergence cleaning in smoothed particle magnetohydrodynamics with variable cleaning speeds

    Get PDF
    We present an updated constrained hyperbolic/parabolic divergence cleaning algorithm for smoothed particle magnetohydrodynamics (SPMHD) that remains conservative with wave cleaning speeds which vary in space and time. This is accomplished by evolving the quantity ψ/ch\psi / c_h instead of ψ\psi. Doing so allows each particle to carry an individual wave cleaning speed, chc_h, that can evolve in time without needing an explicit prescription for how it should evolve, preventing circumstances which we demonstrate could lead to runaway energy growth related to variable wave cleaning speeds. This modification requires only a minor adjustment to the cleaning equations and is trivial to adopt in existing codes. Finally, we demonstrate that our constrained hyperbolic/parabolic divergence cleaning algorithm, run for a large number of iterations, can reduce the divergence of the field to an arbitrarily small value, achieving B=0\nabla \cdot B=0 to machine precision.Comment: 23 pages, 16 figures, accepted for publication in Journal of Computational Physic

    Design considerations for a LORAN-C timing receiver in a hostile signal to noise environment

    Get PDF
    The environment in which a LORAN-C Timing Receiver may function effectively depends to a large extent on the techniques utilized to insure that interfering signals within the pass band of the unit are neutralized. The baseline performance manually operated timing receivers is discussed and the basic design considerations and necessary parameters for an automatic unit utilizing today's technology are established. Actual performance data is presented comparing the results obtained from a present generation timing receiver against a new generation microprocessor controlled automatic acquisition receiver. The achievements possible in a wide range of signal to noise situations are demonstrated
    corecore